$ y[n] = x[n] + x[n -1] $

$ h[n] = \delta[n] + \delta[n-1] $

$ H[z] = \sum_{k=-\infty}^\infty h[k] z^{-k} $

$ = \sum_{k=0}^1 h[k] z^{-k} $

when k = 0, $ H[z] = 1 $

when k = 1, $ H[z] = z^{-1} $

else, $ H[z] = 0 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood