Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


$ \ x(t) = \sin(4\pi t) \sin(6\pi t) $


$ \ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j}) $


$ \ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t}) $


$ \ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)}) $


$ a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4} $


All other values $ \ a_{n} = 0 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva