Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


For a CT signal

x(t) $ = \sum_{k=-\infty}^\infty a_k e^{jk\omega t} $

Where

x(t) $ = 3 + 2cos(4\pi t) = 3 + (e^{j4\pi t} + e^{-j4\pi t} ) $

$ \omega = 4\pi $

A signal $ e^{jk\omega t} $ is periodic if and only if $ \left (\frac{\omega}{2\pi} \right) $ is a rational number

 $ \left ( \frac{4\pi}{2\pi} \right ) =   \left ( \frac{2}{1} \right ) $

2 is a rational number!

$ a_o = 3 $

$ a_4 = 1 $

$ a_{-4} = 1 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett