$ e^{2jt} --> system --> te^{-2jt} $
$ e^{-2jt} --> system --> te^{2jt} $

=>$ \cos(2t) $ --> system =$ \frac{e^{2jt}+e^{-2jt}}{2} $ --> system
=$ \frac{1}{2}(e^{2jt}+e^{-2jt}) $ -->system
=$ \frac{1}{2}e^{2jt}-->system +\frac{1}{2}e^{-2jt} $-->system
=$ \frac{1}{2}te^{-2jt} +\frac{1}{2}te^{2jt} $
=$ \frac{1}{2}t(e^{-2jt} +e^{2jt}) $
=$ t\cos(2t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett