First, rewrite $ cos(2t) \, $ as a complex exponentional :

$ cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2} $

Then, applying the system gives response $ y(t)\! $:

$ y(t) = \frac{[te^{-j2x}+te^{j2x}]}{2} $, (because the system is linear, the $ \frac{1}{2} $ factor remains)

Finally, factoring out the $ t\! $ and simplifying back into a sinusoid function yields:

$ y(t) = tcos(2t)\! $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva