Linearity

The System is defined as follows

$ e^{2jt} \to System\to te^{-2jt}\! $

$ e^{-2jt} \to System \to te^{2jt}\! $

Now if a system is Linear then it is also additive and homogeneous

Thus $ \frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System\to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}\! $

This can also be written as

$ \frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System\to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}\! $= $ t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}] $

Now, $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} $

Thus

$ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t) $

So we see that for input $ cos(2t) $

$ cos(2t) \to System \to tcos(2t) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva