Part A

If we use the same procedure as we did in HW2D then we will find out it is not time variant. The we get

$ \,\ y(t)= (k+1)^2 \delta[(n-no)-(k + 1)] $

$ \,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)] $

Part B

If we set k = 0 then the answer seems easier to get

i.e. $ \,\ \delta(n - 1) $ and now $ \,\ X[n] = u(n) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang