Again, not words but DIAGRAMS
File:Timeinvariant301.jpg if z(t)=y(t) then it is said to be Time Invariant (T.I)
Not time Invariant System
$ \,\ x(t) = t^2 $ and the system multiplies it by t.
$ \,\ y(t) = (t-to)^3 $
$ \,\ z(t) = t(t-to)^2 $
and thus it is not T.I. because y(t) does not equal z(t)
Time Invariant System
$ \,\ x(t) = t^2 $ and the system multiplies it by 3.
$ \,\ y(t) = 3(t-to)^2 $
$ \,\ z(t) = 3(t-to)^2 $
and BAMO y(t) does indeed equal z(t) so it is T.I.