Time Invariance

If the cascade

x(t)--->[time delay by t0]----->[system]-----z(t) ---(1)

yields the same output as the reverse of (a);x(t)--->[system]--->[time delay by t0]---y(t), it is called Time invariant.


Prove

x(t)--->[system]-->y(t)=2x(t)


x(t)--->[time delay by t0]--->y(t)=x(t-t0)----->[system]---->z(t)=2x(t-t0) ---(1)

x(t)--->[system]--->y(t)=2x(t)---->[time delay by y0]---->z(t)=2x(t-t0) ---(2)

The results of (1) and (2) are the same. Thus, it is time invariant.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood