A system is said to be linear if it follows the following conditions

1) The response to $ x_1(t) $ + $ x_2(t) $ is $ y_1(t) $ +$ y_2(t) $.

2) The response to $ ax_1(t) $ is $ ay_1(t) $, where a is any complex constant.

Example for a linear system is

       y(t) = t x(t)     

$ y_1 $ = 8$ e^t $

$ y_2 $=8$ t^2 $

Let ,

$ x_3 $ = 5$ e^t $ + 3$ t^2 $

The output is

$ p(t) $ = 8$ x_3 $

$ p(t) $=40 $ e^t $ + 24 $ t^2 $

$ p(t) $= 5$ x_1 $ + 3 $ x_2 $



The example for a nonlinear system is

          y = $ x^2 (t) $

$ y_1 $ = $ t^2 $

$ y_2 $= $ sin^2 t $

Let ,

$ x_3 $ = $ t $ + $ sin t $

The output is

$ y(t) $ = $ x_3 $

$ y(t) $ = $ (t + sin t)^ 2 $

$ y(t) $= $ t^2 $ + $ sin^2 t $ + $ 2 t sin t $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch