If we have the system x(t) and it gives the output y(t), then the system is linear if you 
can multiply the input by any scalar value and the output will be multiplied by the scalar as well. 

x(t) -> y(t) then ax(t) -> ay(t).

Linear

If the system is 2(x(t))

If x(t)= sin(t)

x(t) ->[2(x(t))]-> 2(y(t)) or 2*sin(t)

Non-Linear

If the system is $ \int(x(t)) $

If x(t)= $ t^2 $

x(t) ->[$ \int x(t) $]-> (y(t)) or $ t^3 \over 3 $

If the input is multiplied by 1/3 it is not the same as multiplying the output by 1/3

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett