Time Invariance

If the cascade

$ x(t) \to timedelay \to sys \to z(t) $

yields the same output as the cascade

$ x(t) \to sys \to timedelay \to z(t) $

for any $ t_{0} $, then the system is called "time invariant".

Example of Time Invariant system

$ X(t)\to sys \to Y(t)=15*X(t) $

$ X(t) \to timedelay \to Y(t)=X(t-t_{0}) \to sys \to Z(t)=15*Y(t)=15*X(t-t_{0}) $

$ X(t) \to sys \to Y(t)=15*X(t) \to timedelay \to Z(t)=15*Y(t-t_{0})=15*X(t-t_{0}) $

Since both the outputs are same we can say that the given system is time invariant.


Example of a Non-Time Invariant system

$ X(t)\to sys \to Y(t)=15*X(2t) $

$ X(t) \to timedelay \to Y(t)=X(t-t_{0}) \to sys \to Z(t)=15*Y(2t)=15*X(2t-t_{0}) $

$ X(t) \to sys \to Y(t)=15*X(2t) \to timedelay \to Z(t)=15*Y(t-t_{0})=15*X(2(t-t_{0}))=15*X(2t-2t_{0}) $

Since both the outputs are different or are not equal we can say that the given system is not time invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett