Definition of Time Invariance

A time-invariant system is one whose output does not depend explicitly on time. If the input signal x produces an output y then any time shifted input results in a time-shifted output.

Examples

Time-Invariant System:

$ y(t) = x(t) + 5 $

$ x(t) \to system \to timedelay \to y(t) = x(t - t_{0}) + 5 $

$ x(t) \to timedelay \to system \to y(t) = x(t - t_{0}) + 5 $

Non-Time-Invariant System:

$ y(t) = x(5t) + 5 $

$ x(t) \to system \to timedelay \to y(t) = x(5t - t_{0}) + 5 $

$ x(t) \to timedelay \to system \to y(t) = x(5(t - t_{0})) + 5 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett