Definition of a Linear System

A Linear System is a system that satisfies the properties of Superposition and Scaling.

Example of a Linear System

Inputs:

$ x_1(t) = 24t\! $
$ x_2(t) = 13t\! $

Outputs:

$ y_1(t) = 3(x_1(t)) = 3(24t)\! $
$ y_2(t) = 3(x_2(t)) = 3(13t)\! $


$ \alpha y_1(t) + \beta y_2(t) = \alpha*3(24t) + \beta*3(13t)\! $
$ \alpha y_1(t) + \beta y_2(t) = 3[\alpha(24t) + \beta(13t)]\! $
$ \alpha y_1(t) + \beta y_2(t) = 3[\alpha x_1(t) + \beta x_2(t)]\! $

Example of a Non-Linear System

$ x_1(t) = 9t\! $
$ x_2(t) = t/5\! $


$ y_1(t) = e^{3x_1(t)} = e^{27t} $
$ y_2(t) = e^{3x_2(t)} = e^{3t/5} $


$ y(t) = e^{27t + 3t/5} = e^{27t}e^{3t/5}\! $


$ e^{27t}e^{3t/5} \neq e^{27t} + e^{3t/5}\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett