Linearity

A system Y is linear if for any signals x1(t) and x2(t) x1(t) passed through Y yeilds y1(t) , x2(t) passed through Y yeilds y2(t) and x1(t) + x2(t) passed through Y yeilds y1(t) + y2(t).

Example

for Example the system y(t) = 3*x(t)

x1(t) = sin(t)+8*pi*t

x2(t) = cos(2*t) + 27*t

x1(t) + x2(t) = sin(t) + cos(2*t) + 27*t + 8*pi*t

passing x1(t) through y(t) yeilds y1(t) = 3*sin(t) + 24*pi*t

passing x2(t) through y(t) yeilds y2(t) =3*cos(2*t) + 81*t

y1(t) + y2(t) = 3*cos(2*t) + 3*sin(t)+ 24*pi*t + 81*t

passing x1(t) + x2(t) through y(t) yeilds 3*cos(2*t) + 3*sin(t)+ 24*pi*t + 81*t


Non-Linear System

y(t) = x(t) + 2

x1(t) = sin(t)

x2(t) = cos(t)

x1(t) + x2(t) = sin(t) + cos(t)

passing x1(t) through y(t) yeilds y1(t) = sin(t) + 2

passing x2(t) through y(t) yeilds y2(t) = cos(t) + 2

y1(t) + y2(t) = sin(t) + cos(t) + 4

passing x1(t) + x2(t) through y(t) yeilds sin(t) + cos(t) + 2

these are not equal, thus the system is not linear

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010