Periodic Signals Revisited
1.1
$ x(t)=e^j*t $
$ e^j*t $---> $ cos(t) + j*sin(t) $ (taken from Cory Ocker's HW1)
transforming it into DT we get $ x[t] = e^j*t $ $ e^j*t $---> $ cos[t] + j*sin[t] $
by sampling every $ 2*pi $ or changing the signal to
$ x[t/(2*pi)] = e^j*t/(2*pi) $
$ e^j*t/(2*pi) $---> $ cos[t/(2*pi)] + j*sin[t/(2*pi)] $
we get 1 every time, however if we were to take a sample every 1 like the original equation we get much different numbers
$ x[t] = e^j*t $
$ e^j*t $---> $ cos[t] + j*sin[t] $
$ cos(1) + jsin(1), cos(2) + jsin(2)..... $ and it continues on without any repetition.