HW1, Chapter 0, Problem 7, MA453, Fall 2008, Prof. Walther

Problem Statement

Could somebody please state the problem?


Discussion

There are a couple ways to go about doing this problem. One of the ways is to use prime factorization. This next part is taken verbatim from Gallian:

By using 0 as an exponent if necessary, we may write $ \displaystyle a = p_1^{m_1} \cdots p_k^{m_k} $ and $ \displaystyle b = p_1^{n_1} \cdots p_k^{n_k} $, where the $ \displaystyle p $'s are distinct primes and the $ \displaystyle m $'s and $ \displaystyle n $'s are nonnegative. Then $ \displaystyle lcm(a, b) = p_1^{s_1} \cdots p_k^{s_k} $, where $ \displaystyle s_i = max(m_i, n_i) $, and $ \displaystyle gcd(a, b) = p_1^{t_1} \cdots p_k^{t_k} $, where $ \displaystyle t_i = min(m_i, n_i) $. Then $ \displaystyle lcm(a, b) \cdot gcd(a, b) = p_1^{m_1 + n_1} \cdots p_k^{m_k + n_k} = ab $.


However, I used the linear combination property of a GCD to solve the problem:

  • We know that $ \displaystyle gcd(a, b) = ax + by, x,y\in\mathbb{Z} $. So, $ \displaystyle lcm(a, b)\cdot gcd(a, b) = ax\cdot lcm(a, b) + by\cdot lcm(a, b) $.
  • From the definition of a least common multiple, we know that $ \displaystyle a\mid lcm(a, b) $ and $ \displaystyle b\mid lcm(a,b) $. Thus:
$ \displaystyle ax\cdot lcm(a, b) + by\cdot lcm(a, b) $
$ \displaystyle = ab\left(x\cdot \frac{lcm(a, b)}{b}\right) + ab\left(y\cdot \frac{lcm(a, b)}{a}\right) $
$ \displaystyle = ab\left(x\cdot \frac{lcm(a, b)}{b} + y\cdot \frac{lcm(a, b)}{a}\right) $
$ \displaystyle = lcm(a, b)\cdot gcd(a, b) $.
  • With this, we know that $ \displaystyle ab\mid lcm(a, b)\cdot gcd(a, b) $, and therefore, $ \displaystyle ab\le lcm(a, b)\cdot gcd(a, b) $.
  • It's easy to see that the value $ \displaystyle \frac{ab}{gcd(a, b)} $ is a multiple of $ \displaystyle a $, as well as a multiple of $ \displaystyle b $. So, $ \displaystyle \frac{ab}{gcd(a, b)} $ is a common multiple of $ \displaystyle a $ and $ \displaystyle b $. Since $ \displaystyle lcm(a, b) $ is the least such multiple, it follows that $ \displaystyle lcm(a, b)\le \frac{ab}{gcd(a, b)} $, or $ \displaystyle lcm(a, b)\cdot gcd(a, b)\le ab $.
  • Since $ \displaystyle ab\le lcm(a, b)\cdot gcd(a, b) $ and $ \displaystyle ab\ge lcm(a, b)\cdot gcd(a, b) $, we have shown that $ \displaystyle ab = lcm(a, b)\cdot gcd(a, b) $. $ \displaystyle\Box $


This is how I got the answer to #7. Questions? Comments? Criticism? Feel free to edit in a reply.

--Nick Rupley 14:32, 6 September 2008 (UTC)

Back to HW1

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang