Properties of Laplace Transform

Time Shifting

$ x(t-t0) =L=> e^{-st_{0}}X(s) $, RoC unchanged
$ e^{s_{0}t}x(t) =L=> X(s-s_{0}) , RoC (S-S_{0} | SeR) $

Time Scaling

$ x(at) =L=> (1/|a|)X(s/a) $, RoC = {as|SeR}

Convolution

$ x_{1}(t)*x_{2}(t) =L=> X_{1}(s)X_{2}(s) $, RoC contains R1 and R2

Corollary:

x(t) => h(t) => x(t)*h(t)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett