Energy

$ E = \int_{t1}^{t2}{|x(t))|^2dt} $

Usint this result let us consider an example,

$ = \int_{0}^{2 \pi}{|cos(t)|^2dt} $

$ = \int_{0}^{2 \pi}\frac{1 + cos(2t)}{2}dt $

$ =\frac{2 \pi}{2} + \frac{1}{4} sin(4 \pi) $

$ =\frac{2 \pi}{2} $

Power

$ P = \frac{1}{2 \pi - 0} \int_{0}^{2 \pi}{|cos(t)|^2dt} $

$ = \frac{1}{2 \pi} \int_{0}^{2 \pi}\frac{[1 + cos(2t)]}{2}dt $


$ =\frac{1}{2} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood