I chose to compute the energy and power for the signal f(t) = 3x.

Energy

$ E = \int_{T2}^{T1} |f(t)|^2\ dt \! $


$ E = \int_{1}^{2} |3x|^2\ dt \! $


$ E = \int_{1}^{2} 9x^2\ dt \! $

$ E = [3x^3]_{t=1}^{t=2} = 21 $

Power




$ P =\frac{1}{t2-t1} \int_{t1}^{t2} |f(t)|^2\ dt \! $




$ P =\frac{1}{2-1} \int_{1}^{2} |3x|^2\ dt \! $




$ P =\frac{1}{2-1} \int_{1}^{2} 9x^2\ dt \! $



$ P = [3x^3]_{t=1}^{t=2} = 21 $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison