HW1, ECE301, Fall 2008, Prof. Boutin

Question

Compute the energy and the power of the function

$ f(t)=\cos \left( t-2 \right). $


Answer

A time shift should not effect the energy or power of periodic function over one period (0 to 2$ \pi $ in this case).

I used this as the original function.

$ u = (t-2) $

Energy

$ E=\int_{-2}^{2\pi-2}{|cos(u)|^2du} $


$ E=\frac{1}{2}\int_{-2}^{2\pi-2}(1+cos(2(u)))du $


$ E=\frac{1}{2}((u+\frac{1}{2}sin(2(u)))|_{u=-2}^{u=2\pi-2} $


$ E=\frac{1}{2}(2\pi-2 + .378 -(-2 - .378)) $


$ E=\pi $

Power

$ P=\frac{1}{2\pi-0}\int_{-2}^{2\pi-2}{|cos(u)|^2du} $


$ P=\frac{1}{2\pi-0} *{\frac{1}{2}}\int_{-2}^{2\pi-2}(1+cos(2u))du $


$ P=\frac{1}{4\pi}((u)+\frac{1}{2}sin(2u))|_{u=-2}^{u=2\pi-2} $


$ P=\frac{1}{4\pi}(2\pi-2+.378-(-2+.378)) $


$ P=\frac{1}{2} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett