Energy of a Signal

$ y = 3e^{t} $ from (0,5)
$ Energy = \int_{t1}^{t2} x(t) $
$ Energy = \int_{0}^{5}3e^{t}dt $
$ Energy = 3e^{5} - 3 $


Power of a Signal

$ y = 3e^{t} $ from (0,5)
$ Average Power = \frac{1}{t2 - t1}\int_{t1}^{t2}x(t)^2 $


$ Average Power = \frac{1}{5}\int_{0}^{5}3e^{2t}dt $
$ Average Power = \frac{1}{5}(\frac{3}{2}e^{10} - \frac{3}{2}) $
$ Average Power = \frac{3}{10}e^{10} - \frac{3}{10} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva