For a continuous-time signal
$ Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1) $

Over an infinite period of time
$ Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt .......... (2) $

If Equation 2 converges, Energy is finite.
If Equation 2 diverges, Energy is infinite.

$ P(\infty)=\lim_{T \to \infty} {\frac{E(\infty)}{2T}} = 0 ................ Finite-energy Signal $
$ P(\infty0 > 0 ................ Infinite-energy Signal $
Not Periodic ..................... Neither Finite nor Infinite.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett