Power and Energy Problem
$ x(t) = 3\cos(4t + \frac{\pi}{3}) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} [\frac{9sin(4t + \frac{\pi}{3})cos(4t + \frac{\pi}{3}) + 4t}{8}]_{-T}^{T}) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} [\frac{18sin(4T + \frac{\pi}{3})cos(4T + \frac{\pi}{3}) + 8T}{8}]) $
$ P_\infty = 0 $
$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $
$ E_\infty = [\frac{9sin(4t + \frac{\pi}{3})cos(4t + \frac{\pi}{3}) + 4t}{8}]_{-\infty}^{\infty} $
$ E_\infty = \infty $
- Bonus Problem!
$ x(t) = e^{j(\pi t-1)} $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} 2T) $
$ P_\infty = 1 $
$ E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt $
$ E_\infty = \int_{-\infty}^\infty 1,dt $
$ E_\infty = \infty $