For a Continuous Time Signal

Energy from $ t_{1} $ to $ t_{2} $

$ E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt $

$ E = \int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt $

$ E = \int_{t_1}^{t_2}\!t\ dt $

$ E = \frac{1}{2}t^{2}|^{t_{2}}_{t_{1}} $

$ E = \frac{1}{2}(t^{2}_{2}-t^{2}_{1}) $

Average power in time interval from [$ t_{1},t_{2} $]:

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|x(t)|^2\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!t\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}t^{2}|^{t_{2}}_{t_{1}}) $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}(t^{2}_{2}-t^{2}_{1})) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman