Signal

$ f(t)=2cos(t) $

Energy

According to formula of Energy of a singal,we can get:

$ E = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $

$ =\int_0^{2\pi}{|2cos(t)|^2dt} $

$ =\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt} $

$ =\int_0^{2\pi}{2+cos(2t))dt} $

$ =(2t+sin(2t))|_{t=0}^{t=2\pi} $

$ =4\pi+0-0-0 $

$ =4\pi $

Power

According to formula of Power of a singal,we can get:

$ P=\frac{1}{2T}\int_{-T}^{T}\!|f(t)|^2\ dt $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{|2cos(t)|^2dt} $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2(2cos(t)^2-1)+2)dt} $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2+cos(2t))dt} $

$ =\frac{1}{4\pi}(2t+sin(2t))|_{t={-2\pi}}^{t=2\pi} $

$ =\frac{1}{4\pi}(4\pi+0-(-4\pi)-0) $

$ =\frac{1}{4\pi}(8\pi) $

$ =2 $


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett