Tyler Mattmuller  HW1 Problem 4
A=440; %Given value
HA=A*2 %one octive above
C=A*3/5 %from table 1
HC=C*2
E=C*5/4;%relate to other notes
HE=E*2
G=C*3/2
HG=G*2
B=15*C/8;
BE=B*2
LG=G/2;
LE=E/2;
LA=A/2
LB=B/2;
LAsharp=233; %Given


DELTA = 0.0001;
t8 = 0:DELTA:.5/2; %an eigth note at 120 beats per minute 
t4 =0:DELTA:1/2; 
t2 = 0:DELTA:2/2;
t16 = 0:DELTA:.25/2;
tdot8 = 0:DELTA:.5*1.5/2;
y1 = sin(2*pi*HE*t16); %a high E related to middle C through table 1 then  doubled to for 1 higher octive.  this is held for the same duration as a 16th note
%E 
sound(y1,1/DELTA);%plays a E note in the 5th octive
y1 = sin(2*pi*HE*t8); 
%E 
sound(y1,1/DELTA);
y1 = sin(2*pi*HE*t16); 
%E 
sound(y1,1/DELTA);
y1 = sin(2*pi*0*t16); 
%rest 16
sound(y1,1/DELTA);
y1 = sin(2*pi*HC*t16); 
%C 
sound(y1,1/DELTA);
y1 = sin(2*pi*HE*t8); 
%E 
sound(y1,1/DELTA);
y1 = sin(2*pi*HG*t4); 
%G 
sound(y1,1/DELTA);
y1 = sin(2*pi*0*t4); 
%rest4 
sound(y1,1/DELTA);
y1 = sin(2*pi*HC*tdot8); 
%C 
sound(y1,1/DELTA);
y1 = sin(2*pi*G*t16); 
%G 
sound(y1,1/DELTA);
y1 = sin(2*pi*0*t8); %when sin(0) y1=0 and no sound will play for a rest
%rest 8 
sound(y1,1/DELTA);
y1 = sin(2*pi*E*t8); 
%E 
sound(y1,1/DELTA);
y1 = sin(2*pi*0*t16); 
%rest 16
sound(y1,1/DELTA);
y1 = sin(2*pi*A*t8); 
%A 
sound(y1,1/DELTA);
y1 = sin(2*pi*B*t16); 
%B
sound(y1,1/DELTA);
y1 = sin(2*pi*0*t16); 
%rest 16
sound(y1,1/DELTA);
y1 = sin(2*pi*LAsharp*t16); 
%LAsharp
sound(y1,1/DELTA);
y1 = sin(2*pi*A*t8); 
%A  8
sound(y1,1/DELTA);

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett