Periodic versus non-periodic functions (hw1, ECE301)

Read the instructor's comments here.

Periodic Functions in Continuous Time

  • Functions are classified as periodic if there exists $ T>0\! $ such that $ y(x+T)=y(x)\! $.


The following is an example of a periodic function:

$ y(x)=sin(pi*x)\! $
Sinpix ECE301Fall2008mboutin.jpg

This function is periodic because $ y(x)=y(x+T)\! $ for $ T=2, 4, 6\! $ etc.

Non-Periodic Functions in Continuous Time

  • Functions are classified as non-periodic if there exists no $ T>0\! $ such that $ y(x+T)=y(x)\! $.


The following is an example of a non-periodic function:

$ y(x)=1/e^x\! $
Nonper ECE301Fall2008mboutin.JPG

This function is not periodic because there exists no T where $ y(x)=y(x+T)\! $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva