This is an example Prof. Boutin

$ e^{\frac{1}{2} j \pi n} \,\ $ is periodical because $ \omega = \frac{1}{2} \pi $ so $ \frac {\omega}{2 \pi} = \frac {1}{4} $

$ e^{\sqrt 2 j \pi n} $ is not periodical because $ \omega = \sqrt 2 \pi $ so $ \frac {\omega}{2 \pi} = \frac {1}{\sqrt 2} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett