%Notes:

x = 240;

C = x;

E = (5/4)*x;

G = (3/2)*x;

GL = (1/2)*(3/2)*x;

EL = (1/2)*(3/4)*x;

AL = (1/2)*(5/3)*x;

BL = (1/2)*(15/8)*x;

AsL = 233.08;


%Note Lengths

del = 0.00001;

rest = 0;

w = 3.2;

half = 0:del:w/2;

qurtr = 0:del:w/4;

dotqurtr = 0:del:(3/4)*w;

eighth = 0:del:w/8;

sixtn = 0:del:w/16;


%Starts song

%plays 1/16 note E

y = sin(2*pi*E*sixtn);

sound(y,1/del);

%plays 1/8 note E

y = sin(2*pi*E*eighth);

sound(y,1/del);

%plays 1/16 note E

y = sin(2*pi*E*sixtn);

sound(y,1/del);

%plays 1/16 note G

y = sin(2*pi*G*sixtn);

sound(y,1/del);

%plays 1/16 note C

y = sin(2*pi*C*sixtn);

sound(y,1/del);

%plays 1/8 note E

y = sin(2*pi*E*eighth);

sound(y,1/del);

%plays 1/4 note G

y = sin(2*pi*G*qurtr);

sound(y,1/del);

%plays quarter rest

y = sin(2*pi*rest*qurtr);

sound(y,1/del);

%plays dotted quarter C

y = sin(2*pi*C*dotqurtr);

sound(y,1/del);

%plays 1/16 note low G

y = sin(2*pi*GL*sixtn);

sound(y,1/del);

%plays 1/8 rest

y = sin(2*pi*rest*eighth);

sound(y,1/del);

%plays 1/8 low E

y = sin(2*pi*EL*eighth);

sound(y,1/del);

%play 1/16 rest

y = sin(2*pi*rest*sixtn);

sound(y,1/del);

%plays 1/8 low A

y = sin(2*pi*AL*eighth);

sound(y,1/del);

%plays 1/16 low B

y = sin(2*pi*BL*sixtn);

sound(y,1/del);

%plays 1/16 rest

y = sin(2*pi*rest*sixtn);

sound(y,1/del);

%plays 1/16 low A#

y = sin(2*pi*AsL*sixtn);

sound(y,1/del);

%plays 1/8 low A

y = sin(2*pi*AL*eighth);

sound(y,1/del);

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett