Find Conjugate

$ 5 - 3*i = 5 + 3*i $


$ 21 + 15*i = 21 - 15*i $


Perform Operation

$ (2 + 3*i) - (6 - 4*i) = -4 + 7*i $


$ 7*i \times (7 - 3*i) = 49*i - 21*i^2 = 49*i - 21*(-1) = 21 + 49*i $


$ (3 + 2*i)^2 + (4 - 3*i) = (9 + 6*i + 6*i + 4*i^2) + (4 - 3*i) = 9 - 4 + 4 + 12*i - 3*i = 9 + 9*i $


$ \frac{4}{2+3*i} = \frac{4}{2+3*i} \times \frac{2-3*i}{2-3*i} = \frac{8-12*i}{4+6*i-6*i-9*i^2} = \frac{8 - 12*i}{13} = \frac{8}{13} - \frac{12}{13} \times i $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett