Definition of Complex Number

A complex number can be defined as $ j = \sqrt(-1) $

$ j^1 = j\! $

$ j^2 = -1\! $

$ j^3 = -j\! $

$ j^4 = 1\! $

Addition

$ (a+bj)+(c+dj) = (a + c) + (c + d)j\! $


$ (1+3j)+(2+4j) = (3 + 7j)\! $

Subtraction

$ (a+bj)-(c+dj) = (a-c)+(b-d)j\! $


$ (1+3j)-(2+4j) = (-1 - 4j)\! $

Multiplication

$ (a+bj)*(c+dj) = (ac-bd)+(ad+bc)j\! $


$ (1+3j)*(2+4j) = (-10 + 10j)\! $

Division

$ (a+bj)/(c+dj) = ((a+bj)*(c-dj))/((c+dj)*(c-dj)) = ((ac+bd)+(-ad+bc)j)/(c^2+d^2)\! $


$ (1+3j)/(2+4j) = (0.7 + 0.1j)\! $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett