Listen to HailPurdue_Sound_ECE301Fall2008mboutin Or listen to HailPurdue_Sound2_ECE301Fall2008mboutin!! OR listen to HailPurdue_Sound3_ECE301Fall2008mboutin!!!

%Jack Williams
%ECE 301, Mimi Boutin
%HW 1
%September 4, 2008

%PART A -------------------------------------------------

% Note Frequencies
A   = 220;
B   = 246.942;
C   = 261.626;
Db  = 277.183;
D   = 293.665;
Eb  = 311.127;
E   = 329.628;
F   = 349.228;
Gb = 369.994;
G   = 391.995;
Ab  = 415.305;

%Note Vector
NV = [A, B, Db, D, E, Gb, Gb, G, G, G, D, E, F, Gb]; 

%Time definition and Sampling Frequency
delta = 0.00005;
stop_time = 0.4;
t = 0:delta:0.5;

%Sound Playing Loop
for i = 1:1:length(NV)
    signal = sin(2*pi * t * NV(i));
    sound(signal, 1/delta);
end

%PART B -------------------------------------------------

%stop_time cut in half
stop_time = stop_time/2;
t = 0:delta:stop_time;

%Sound Playing Loop
for i = 1:1:length(NV)
    signal = sin(2*pi * t * NV(i));
    sound(signal, 1/delta);
end

%PART C --------------------------------------------------

%stop_time Redifinition
stop_time = 2*stop_time;
t = 0 : delta : stop_time;

%Rescale from x(t) to x(2t)
for i = 1:1:length(NV)
  signal = sin(4*pi * t * NV(i));
  sound(signal, 1/delta);
end

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett