Godel's Incompleteness Theorem (first one)

Any logical system cannot be both consistent and complete. In particular, for any consistent, logical system that proves certain truths, there will always be a statement that is true, but not provable in the theory.

Mainly, I am fond of this, because while we know of this result, we also tend to ignore it and keep plodding away at math, acting like it doesn't exist. --Cctroxel 12:24, 22 January 2009 (UTC)


Link back to theorem's page: http://kiwi.ecn.purdue.edu/rhea/index.php/MA_453_Spring_2009_Walther_Week_1

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva