Total Energy:

$ E_{\infty} = \int^{\infty}_{-\infty} |x(t)|^2 dt = \lim_{T\to\infty} \int^T_{-T} |x(t)|^2 dt $

Average Power:

$ P_{\infty} = \lim_{T\to\infty} \frac{1}{2T} \int^T_{-T} |x(t)|^2 dt $

Therefore if

$ E_{\infty} < \infty $,

$ P_{\infty} = \lim_{T\to\infty} \frac{E_{\infty}}{2T} = 0 $

-Bill Snow

Go Back

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett