Example of computation of Signal energy and Signal Power
A practice problem on "Signals and Systems"
$ x(t) = \sqrt(t) $
$ x_1(t) = \cos(t) + \jmath\sin(t) $
$ E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt $
$ =\int_{-\infty}^\infty |\sqrt(t)|^2\,dt $ $ =\int_0^\infty t\,dt $ $ =.5*t^2|_0^\infty $ $ =.5(\infty^2 - 0^2) $
$ E_\infty = \infty $
$ P_\infty = lim_{T \to \infty} \ 1/(2T) \int_{-T}^T |x(t)|^2\,dt $
$ = lim_{T \to \infty} \ 1/(2T) \int_{-T}^T |\sqrt(t)|^2\,dt $ $ = lim_{T \to \infty} \ 1/(2T) .5*t^2|_0^T $ $ = lim_{T \to \infty} \ 1/(2T) * .5(T^2 - 0^2) $ $ = lim_{T \to \infty} \ 1/(2T) * .5T^2 $ $ = lim_{T \to \infty} \ 1/(4T)*T^2 $ $ = lim_{T \to \infty} T/4 $
$ P_\infty = \infty $
$ |x_1(t)| = \sqrt{\cos^2(t)+\sin^2(t)}=1 $
$ E_\infty = \int_{-\infty}^\infty |x_1(t)|^2\,dt $
$ = \int_{-\infty}^\infty |1|^2 \,dt $ $ = t|_{-\infty}^\infty $
$ E_\infty = \infty $
$ P_\infty = lim_{T \to \infty} \ 1/(2T) \int_{-T}^T |x_1(t)|^2\,dt $
$ = lim_{T \to \infty} \ 1/(2T) \int_{-T}^T |1|^2 \,dt $ $ = lim_{T \to \infty} \ 1/(2T) * t|_{-T}^T $ $ = lim_{T \to \infty} \ 1/(2T) * (T- (-T)) $ $ = lim_{T \to \infty} \ 1/(2T) * (2T) $ $ = lim_{T \to \infty} \ 1 $
$ P_\infty = 1 $