$ x(t) = \sqrt{t} $
$ E_{\infty} = \int_{-\infty}^{\infty}|x(t)|^{2}dt $
$ E_{\infty} = \int_{-\infty}^{\infty}|\sqrt{t}|^{2}dt $
$ E_{\infty} = \int_{-\infty}^{\infty}t dt $
$ E_{\infty} = \frac{1}{2}t^{2}|_{-\infty}^{0}+\frac{1}{2}t^{2}|_{0}^{\infty} $
$ E_{\infty} = \infty $
$ P_{\infty} = lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^{T}|x(t)|^{2}dt $
$ P_{\infty} = lim_{T\rightarrow\infty}\frac{1}{2T}(.5T^{2}|_{-\infty}^{0}+.5T^{2}|_{0}^{\infty}) $
$ P_{\infty} = lim_{T\rightarrow\infty}\frac{1}{4}(T|_{-\infty}^{0}+T|_{0}^{\infty}) $
$ P_{\infty} = \infty $