Power and Energy Devices and Systems (PE)
Question Set 1: Energy Conversion and Reference Frame Theory
August 2017
Contents
Problem 1
Solution
- Click here to view student answers and discussions
Problem 2
Solution
- Click here to view student answers and discussions
Problem 3
Solution
- Click here to view student answers and discussions
Trigonometric Identities
- $ 2 \sin A \cos B = \sin(A + B) + \sin(A - B) $
- $ \cos\left(x\right) + \cos\left(x - \frac{2\pi}{3}\right) + \cos\left(x + \frac{2\pi}{3}\right) = 0 $
- $ \sin\left(x\right) + \sin\left(x - \frac{2\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right) = 0 $
- $ \cos\left(x\right) \cos\left(y\right) + \cos\left(x - \frac{2\pi}{3}\right) \cos\left(y - \frac{2\pi}{3}\right) + \cos\left(x + \frac{2\pi}{3}\right) \cos\left(y + \frac{2\pi}{3}\right) = \frac{3}{2} \cos(x - y) $
- $ \sin\left(x\right) \sin\left(y\right) + \sin\left(x - \frac{2\pi}{3}\right) \sin\left(y - \frac{2\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right) \sin\left(y + \frac{2\pi}{3}\right) = \frac{3}{2} \cos(x - y) $
- $ \sin\left(x\right) \cos\left(y\right) + \sin\left(x - \frac{2\pi}{3}\right) \cos\left(y - \frac{2\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right) \cos\left(y + \frac{2\pi}{3}\right) = \frac{3}{2} \sin(x - y) $