1)

Alt text

$ \nabla\times\bar{H} = \bar{J}+\frac{\partial D}{\partial t} = 0\hspace{1cm}d\bar{l} = dr\hat{r} + rd\phi\hat{\phi} + dz\hat{z} $

$ \nabla\times\bar{E} = -\frac{\partial \bar{B}}{\partial t}\hspace{1cm}dv=r dr d\phi dz $

$ \oint\bar{E}\cdot d\bar{l} = -\frac{\partial}{\partial t}\int_S \bar{B}\cdot d\bar{S} = -\frac{\partial\Phi}{\partial t} $

$ \Phi = \int_0^{2\pi}\int_0^rB_0\sin\omega t(rd\phi dr) = B_0\sin(\omega t)(\pi r^2) $

$ \int_0^{2\pi}E_{\phi}(rd\phi) = -\omega B_0\cos(\omega t)(\pi r^2) $

$ \bar{E} = \frac{-\omega B_0(\pi r^2)\cos(\omega t)}{2\pi r}\hat{\phi} $

$ \bar{E} = \frac{-\omega B_0 r\cos(\omega t)}{2}\hat{\phi} $

$ P = \frac{1}{2}\int_v\bar{J}\cdot\bar{E}dv = \frac{\sigma}{2}\int_v\bar{E}\cdot\bar{E}dv = \frac{\sigma}{2}\int_v|E|^2dv $

$ P = \frac{\sigma}{2}\int_0^h\int_0^{2\pi}\int_0^a\frac{\omega^2B_0^2r^2\cos^2(\omega t)}{4}(r dr d\phi dz) $

$ P = \frac{\sigma}{8}\bigg(\omega^2B_0\cos^2(\omega t)(2\pi h)\bigg)\bigg(\frac{a^4}{4}\bigg) $

$ P = \frac{\pi\sigma B_0^2ha^4\cos^2(\omega t)}{16}W $

-\underline{time-average}: $ \cos^2(\omega t) $ drops out (gives 1/2 factor)


2)

$ \nabla\times\bar{E} = -\frac{\partial B}{\partial t} = 0 \to\oint\bar{E}\cdot d\bar{l} = 0 $

a)

$ \oint\bar{H}\cdot d\bar{l} = \int\bar{J}\cdot ds + \int\frac{\partial D}{\partial t}\cdot d\bar{s} $

\underline{for left figure:}

$ \int_0^{2\pi}\bar{H}_\phi r d\phi = I_0 \cos\omega t +0 $

$ (2\pi r)\bar{H}_\phi = I_0\cos\omega t $

$ \bar{H} = \frac{I_0\cos(\omega t)}{2\pi r}\hat{\phi} $

\underline{for right figure:}

$ \bar{E} $ between plates :

$ \oint\bar{D}\cdot ds = \int_v \rho_v dv = Q $

$ \int_0^{2\pi} \int_0^a D_z rdrd\phi = Q = \int I_0 \cos(\omega t) dt $

$ \bar{D}_z(\pi a^2) = \frac{I_0}{\omega} \sin(\omega t) $

$ \bar{E} = \frac{I_0}{\omega \pi a^2 \epsilon_0}\sin(\omega t)\hat{z} $

$ \to (2 \pi r)\bar{H}_{\phi} = 0 + \frac{\partial}{\partial t}\int_0^{2\pi} \int_0^a \frac{I_0}{\omega \pi a^2}\sin (\omega t) rdrd\phi $

$ (2 \pi r)\bar{H}_{\phi} = \frac{\partial}{\partial t} \Big(\frac{I_0}{\omega \cancel{\pi a^2}}\sin (\omega t)\Big) (\cancel{\pi a^2}) $

$ (2 \pi r)\bar{H}_{\phi} = I_0 \cos(\omega t) $

$ \bar{H} = \frac{I_0 \cos (\omega t)}{2 \pi r} $


b) $ D = 9\epsilon_0\bar{E} $

--- $ \bar{E} $ will decrease by a factor of 9 between plates.

--- $ \bar{H} $ stays the same.

--- Surface integrals remain the same; $ \bar{E} $ field only changes.


c-i)$ W_e = \frac{1}{2} \int_v\bar{D}\cdot\bar{E}dv = \frac{1}{2}\int_v|\bar{E}|^2dv $

$ = \frac{1}{2}\int_v\frac{I_0^2\sin^2\omega t}{\omega^2(\pi a^2)^2\epsilon^2}dv $

$ =\frac{I_0^2\sin^2\omega t}{2\omega^2(\pi a^2)^2\epsilon^2}(\pi a^2d) $

$ W_e = \frac{I_0^2d\sin^2\omega t}{2\omega^2(\pi a^2)\epsilon^2}\xrightarrow{\text{time average}} W_e = \frac{I_0^2d}{4\omega^2(\pi a^2)\epsilon^2} $


c-ii) $ W_m = \frac{1}{2}\int_v\bar{B}\cdot\bar{H}dv = \frac{1}{2}\int_v|H|^2dv $

$ \bar{E} = \frac{I_0}{\omega \pi a^2\epsilon_0}\sin(\omega t)\hat{z} $

$ H_\phi(2\pi r) = \frac{\partial}{\partial t}\int_0^{2\pi}\int_0^r\frac{I_0\sin(\omega t)}{\omega \pi a^2}(r dr d\phi) $

$ H_\phi(2\pi r) = I_0\cos(\omega t)\bigg[\frac{\pi r^2}{\pi a^2}\bigg] $

$ \bar{H} = \frac{I_0\cos(\omega t)}{2\pi}\bigg(\frac{r}{a^2}\bigg) $

$ W_m = \frac{1}{2}\int_v|H|^2dv $

$ \frac{1}{2}\int_0^d\int_0^{2\pi}\int_0^a\frac{I_0^2\cos^2\omega t}{4\pi^2}\bigg(\frac{r^2}{a^4}\bigg)d dr d\phi dz $

$ = \frac{I_0^2\cos^2(\omega t)}{8\pi^2a^4}\bigg(\frac{a^4}{4}\bigg) $

$ W_m = \frac{I_0^2\cos^2(\omega t)}{32\pi^2}\xrightarrow{\text{time average}} W_m = \frac{I_0^2}{64\pi^2} $

$ \frac{\cancel{I_0^2}}{64\pi^2} < \frac{\cancel{I_0^2}d}{4\omega^2(\pi a^2)\epsilon^2} $ $ \omega^2 <\frac{16\pi d}{a^2\epsilon^2} $

$ \omega < \frac{4\sqrt{\pi d}}{a\epsilon} $

--- quasi-static assumption ignores retardation effect on coupled $ \bar{E} $ and $ \bar{H} $ fields. The assumption holds when the frequency $ \frac{c}{\lambda} $ is small ($ \lambda $ is large)

--- as d gets large, the frequency must get smaller and smaller to ignore retardation effects.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang