The Geometric Series formulas below still hold for $ \alpha\ $'s containing complex exponentials.

For k from 0 to n, where $ \alpha \ne 1 $:

$ \sum_{k=0}^{n} \alpha^k = \frac{1-\alpha^{n+1}}{1-\alpha} $
(else, = n + 1)

For k from 0 to $ \infty\ $, where $ \alpha < 1\ $:

$ \sum_{k=0}^\infty \alpha^k = \frac{1}{1-\alpha} $
(else it diverges)

Example: We want to evaluate the following:

$ \sum_{k=0}^\infty (\frac{1}{2})^k e^{-j \omega k}= \sum_{k=0}^\infty (\frac{1}{2}e^{-j\omega})^k = \frac{1}{1-\frac{1}{2}e^{-j\omega}} $

In this case, $ \alpha=\frac{1}{2}e^{-j\omega} $ in the above Geometric Series formula.


Back to ECE301

Back to ECE438

More on geometric series

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett