1.

Linear: $ y[n]=x[n]+3x[n-1] $ Non Linear: $ y[n]=x[n]^2+x[n] $

Causal: $ y[t]=(1/3)x[t] $ Non Causal: $ y[n]=x[n+5]+x[n-2] $

With Memory: $ y[n]=x[n-1]^2 $ Without Memory: $ y[n]=sin(x[n]) $

Invertible: $ y[t]=16x[t] $ Non Invertible: $ y[t]=|x[t]| $

Stable: $ y[n]=x[n^2]+x[n-1] $ Unstable: $ y[n]=n!x[n] $

Time Variant: $ y[n]=x[n]/(n^2+1) $ Time Invariant: $ y[n]=x[n-2]^3 $

2.Graphical Convolution.jpg


3.

$ y(t)=cos(4t) $ The period is $ pi/2 $

Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett