7.8 QE 2004 January

1. (30 pts.)

This question consists of two separate short questions relating to the structure of probability space:

(a)

Assume that $ \mathcal{S} $ is the sample space of a random experiment and that $ \mathcal{F}_{1} $ and $ \mathcal{F}_{2} $ are $ \sigma $ -fields (valid event spaces) on $ \mathcal{S} $ . Prove that $ \mathcal{F}_{1}\cap\mathcal{F}_{2} $ is also a $ \sigma $ -field on $ S $ .

(b)

Consider a sample space $ \mathcal{S} $ and corresponding event space $ \mathcal{F} $ . Suppose that $ P_{1} $ and $ P_{2} $ are both balid probability measures defined on $ \mathcal{F} $ . Prove that $ P $ defined by $ P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right),\qquad\forall A\in\mathcal{F} $ is also a valid probability measure on $ \mathcal{F} $ if $ \alpha_{1},\;\alpha_{2}\geq0 $ and $ \alpha_{1}+\alpha_{2}=1 $ .

Answer

• Because $ P_{1} $ and $ P_{2} $ are valid probability measures, we know that they satisfy the axioms of probability:

1. $ P_{1}\left(A\right)\geq0 $ and $ P_{2}\left(A\right)\geq0 $ , $ \forall A\in\mathcal{F}\left(\mathcal{S}\right) $ .

2. $ P_{1}\left(\mathcal{S}\right)=1 $ and $ P_{2}\left(\mathcal{S}\right)=1 $ .

3. If $ A_{1} $ and $ A_{2}\in\mathcal{F}\left(\mathcal{S}\right) $ are disjoint events, then $ P_{1}\left(A_{1}\cup A_{2}\right)=P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right) $ and $ P_{2}\left(A_{1}\cup A_{2}\right)=P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right) $ .

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right) $ is countable collection of disjoint events, then $ P_{1}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right) $ and $ P_{2}\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right) $ .

• Now, we check each condition to become a valid probability measure:

1. $ P\left(A\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)\geq0 , \forall A\in\mathcal{F}\left(\mathcal{S}\right) $ .

$ \because\alpha_{1}\geq0,\;\alpha_{2}\geq0,\; P_{1}\left(A\right)\geq0,\text{ and }P_{2}\left(A\right)\geq0 $ .

2. $ P\left(S\right)=\alpha_{1}P_{1}\left(A\right)+\alpha_{2}P_{2}\left(A\right)=\alpha_{1}+\alpha_{2}=1 $ .

3. If $ A_{1} $ and $ A_{2}\in\mathcal{F}\left(\mathcal{S}\right) $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=\alpha_{1}P_{1}\left(A_{1}\cup A_{2}\right)+\alpha_{2}P_{2}\left(A_{1}\cup A_{2}\right)=\alpha_{1}\left\{ P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)\right\} +\alpha_{2}\left\{ P_{2}\left(A_{1}\right)+P_{2}\left(A_{2}\right)\right\} $$ =\alpha_{1}P_{1}\left(A_{1}\right)+\alpha_{2}P_{2}\left(A_{1}\right)+\alpha_{1}P_{1}\left(A_{2}\right)+\alpha_{2}P_{2}\left(A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right). $

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in\mathcal{F}\left(\mathcal{S}\right) $ is countable collection of disjoint events, then $ P\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}P_{1}\left(\cup_{i=0}^{\infty}A_{i}\right)+\alpha_{2}P_{2}\left(\cup_{i=0}^{\infty}A_{i}\right)=\alpha_{1}\sum_{i=1}^{\infty}P_{1}\left(A_{i}\right)+\alpha_{2}\sum_{i=1}^{\infty}P_{2}\left(A_{i}\right) $$ =\sum_{i=1}^{\infty}\left\{ \alpha_{1}P_{1}\left(A_{i}\right)+\alpha_{2}P_{2}\left(A_{i}\right)\right\} =\sum_{i=1}^{\infty}P\left(A_{i}\right). $

2. (10 pts.)

Identical twins come from the same egg and and hence are of the same sex. Fraternal twins have a probability $ 1/2 $ of being of the same sex. Among twins, the probability of a fraternal set is p and of an identical set is $ q=1-p $ . Given that a set of twins selected at random are of the same sex, what is the probability they are fraternal? (Simplify your answer as much as possible.) Sketch a plot of the conditional probability that the twins are fraternal given that they are of the same sex as a function of $ q $ (the probability that a set of twins are identical.)

Note

This problem is identical to the problem in the MBR 2004 Spring Final.

3. (30 pts.)

Let $ \mathbf{X}\left(t\right) $ be a real continuous-time Gaussian random process. Show that its probabilistic behavior is completely characterized by its mean $ \mu_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ and its autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]. $

4. (30 pts.)

Assume that $ \mathbf{X}\left(t\right) $ is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\delta\left(t_{1}-t_{2}\right) $. Let $ \mathbf{Y}\left(t\right) $ be a new random process defined by $ \mathbf{Y}\left(t\right)=\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds $, where $ T>0 $ .

(a)

What is the mean of $ \mathbf{Y}\left(t\right) $ ?

$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{1}{T}\int_{t-T}^{t}\mathbf{X}\left(s\right)ds\right]=\frac{1}{T}\int_{t-T}^{t}E\left[\mathbf{X}\left(s\right)\right]ds=\frac{1}{T}\int_{t-T}^{t}0ds=0. $

(b)

What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?

$ R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\right] $

(c)

Write an expression for the second-order pdf $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ .

(d)

Under what conditions on $ t_{1} $ and $ t_{2} $ will $ \mathbf{Y}\left(t_{1}\right) $ and $ \mathbf{Y}\left(t_{2}\right) $ be statistically independent?


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang