Solution to Q1 of Week 9 Quiz Pool


a. The difference equation for this system is

$ \begin{align} & H(z) = 1-2\cos\theta z^{-1}+z^{-2} = \frac{Y(z)}{X(z)} \\ & Y(z) = X(z)-2\cos\theta X(z)z^{-1} + X(z)z^{-2} \\ \end{align}\,\! $
Appling the inverse DTFT, $ \quad y[n]=x[n]-2\cos\theta x[n-1]+x[n-2]\,\! $.


b. Find the frequency response $ H(w) $ from the difference equation:

i. In an LTI system decribed by a difference equation, if we input $ e^{jwn} $, then the output is always $ H(w)e^{jwn} $.
$ \begin{align} H(w)e^{jwn} & =e^{jwn}-2\cos\theta e^{jw(n-1)}+e^{jw(n-2)} \\ & =e^{jwn}(1-2\cos\theta e^{-jw} + e^{-j2w}) \\ \end{align} $
Hence, $ H(w)=1-2\cos\theta e^{-jw} + e^{-j2w}\,\! $
ii. It is easily driven that $ h[n]=\delta[n]-2\cos\theta\delta[n-1]+\delta[n-2]\,\! $.
Appling DTFT, $ H(w)=1-2\cos\theta e^{-jw} + e^{-j2w}\,\! $


c. Find the response of this system to the input x[n]:

$ x[n]=\delta[n+1]+\delta[n]\,\! $
$ X(w)=e^{jw}+1\,\! $
$ \begin{align} Y(w) & = X(w)H(w) \\ & = (e^{jw}+1)(1-2\cos\theta e^{-jw} + e^{-j2w}) \\ & = e^{jw} - 2\cos\theta + e^{-jw} + 1 - 2\cos\theta e^{-jw} + e^{-j2w} \\ \end{align} $
therefore, $ y[n]=\delta[n+1] + (1-2\cos\theta)\delta[n] + (1-2\cos\theta)\delta[n-1] + \delta[n-2]\,\! $


d. If we further look at the frequency response of this filter,

$ \begin{align} H(w)&=1-2\cos\theta e^{-jw} + e^{-j2w} \\ &= e^{-jw}(e^{jw}+e^{-jw}-2\cos\theta) \\ &= e^{-jw}(2\cos w -2\cos\theta) \\ \end{align} $
The magnitude reponse is $ |H(w)|=2\cos w -2\cos\theta\,\! $, which becomes zero at $ w=\pm \theta $.
therefore, when $ \theta=\pi/2 $, it is a bandstop filter.


e. The signal modulated at $ f $ Hz and sampled at $ F_s $ is mapped to the DTFT by the following rule.

$ w=2\pi\frac{f}{F_s}\,\! $.
Thus, $ w=2\pi\frac{2000}{8000}=\frac{\pi}{2}\,\! $
Since this filter bandstops at $ w=\pm \theta $, $ \theta $ must be $ \pi/2 $.

Back to Lab Week 9 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett