ECE438 Lab Week10 Quiz Question 4 Solution

a. By computing X(z) and Y(z), we can obtain H(z)=Y(z)/X(z)

$ \begin{align} X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}&=\sum_{n=-\infty}^{\infty}(\frac{1}{2})^nu[n]z^{-n}+\sum_{n=-\infty}^{\infty}2^nu[-n-1]z^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=-\infty}^{-1}2^nz^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=1}^{\infty}2^{-n}z^{n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=0}^{\infty}2^{-n}z^{n}-1 \\ &=\frac{1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1-\frac{z}{2}}-1\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|<2 \\ &=\frac{\frac{3}{4}z^{-1}}{(1-\frac{1}{2}z^{-1})(z^{-1}-\frac{1}{2})}\text{ ,ROC: }\frac{1}{2}<|z|<2 \end{align} $

$ \begin{align} Y(z)=\sum_{n=-\infty}^{\infty}y[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{4})^nu[n]z^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{4}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{4} \\ &=\frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{4}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{4} \end{align} $

Thus

$ H(z)=\frac{Y(z)}{X(z)}=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}\text{ ,ROC: }\frac{3}{4}<|Z|<2 $

b. By computing the inverse Z transform of H(z), we can obtain the impulse response h[n]

$ H(z)=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}=\frac{1}{1-\frac{3}{4}z^{-1}}-2*\frac{z^{-1}}{1-\frac{3}{4}z^{-1}} $

Given the ROC of $ \frac{3}{4}<|Z|<2 $, the z inverse transform of $ \frac{1}{1-\frac{3}{4}z^{-1}} $ can be obtained as $ (\frac{3}{4})^nu[n] $

using time shifting property of Z transform we can get

$ h[n]=(\frac{3}{4})^nu[n]-2(\frac{3}{4})^{n-1}u[n-1] $

c. According to Question a

$ Y(z)(1-\frac{3}{4}z^{-1})=X(z)(1-2z^{-1}) $

Applying z inverse transform to both sides we obtain the difference equation

$ y[n]-\frac{3}{4}y[n-1]=x[n]-2x[n-1] $

d. Filter represented by this difference equation is IIR. Because the transfer function has one non-zero pole that is not cancelled out by any zero.

e. The system is stable because the ROC include the unit circle.


Back to Quiz Pool

Back to Lab wiki

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn