$ \scriptstyle f(x)\ =\ x^n+a_{n-1}x^{n-1}+\ldots+a_0\ =\ \in\ Z[x],\ (x-r)\mid f(x),\ r=\frac{p}{q},\ p,q\in\mathbb{Z},\ gcd(p,q)=1,\ q\neq0 $

Note that we can assume that $ \scriptstyle gcd(p,q)=1 $ because in any representation $ \scriptstyle r\ =\ \frac{s}{t}\ \mid s,t\in\mathbb{Z},\ t\neq0 $ where $ \scriptstyle s $ and $ \scriptstyle t $ are not coprime we can find a coprime $ \scriptstyle p $ and $ \scriptstyle q $ such that $ \scriptstyle r\ =\ \frac{p\cdot gcd(s,t)}{q\cdot gcd(s,t)}\ =\ \frac{p}{q} $.

$ \scriptstyle\Rightarrow\ f(x)\ =\ (x-\frac{p}{q})(x^{n-1}+b_{n-2}x^{n-2}+\ldots+b_0),\ \ b_{n-2},\ldots,b_0\in\mathbb{Q} $

$ \scriptstyle f(r)\ =\ f(\frac{p}{q})\ =\ (\frac{p}{q}-\frac{p}{q})(\textstyle\cdots\cdots\scriptstyle)\ =\ 0 $.

$ \scriptstyle\Rightarrow\ (\frac{p}{q})^n+a_{n-1}(\frac{p}{q})^{n-1}+\ldots+a_1(\frac{p}{q})+a_0\ =\ 0 $.

Now, multiply both sides by $ \scriptstyle q^n $:

$ \scriptstyle p^n+a_{n-1}p^{n-1}q+\ldots+a_1pq^{n-1}+a_0q^n\ =\ 0 $

$ \scriptstyle\Rightarrow\ p^n\ +\ q\cdot(a_{n-1}p^{n-1}+a_{n-2}p^{n-2}q+\ldots+a_1pq^{n-2}+a_0q^{n-1})\ =\ 0 $

$ \scriptstyle\Rightarrow\ p^n\ =\ q\cdot(-a_{n-1}p^{n-1}-a_{n-2}p^{n-2}q-\ldots-a_1pq^{n-2}-a_0q^{n-1}) $

$ \scriptstyle\Rightarrow\ q\mid p^n $

Since $ \scriptstyle gcd(p,q)=1 $, this implies that $ \scriptstyle q\ =\ 1 $.

$ \scriptstyle\Rightarrow\ r\ =\ \frac{p}{1}\ =\ p $

$ \scriptstyle\Rightarrow\ r\ \in\ \mathbb{Z} $. $ \scriptstyle\Box $

--Nick Rupley 03:37, 8 April 2009 (UTC)


Nick- Thanks so much for posting! This problem makes sense now!

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang