$ x(t)=4\cos(t)+4\jmath\sin(t) $

Compute magnitude of $ x(t) $

  $ |x(t)|=|4\cos(t)+4\jmath\sin(t)| $
  $ |x(t)|=\sqrt{16\cos^2(t)+16\sin^2(t)}=4 $ 

Compute $ E\infty $

  $ E\infty=\int_{-\infty}^\infty |4|^2\,dt $
  
  $ E\infty=16t|_{-\infty}^\infty $
  $ E\infty=\infty $

Compute $ P\infty $

  $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|4|^2dt $
  $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16|_{-T}^T $
  $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*16(T-(-T)) $
  $ P\infty=lim_{T \to \infty} \ 16 $
  $ P\infty=16 $

Alumni Liaison

EISL lab graduate

Mu Qiao