$ x(t)=\cos(t)+\jmath\sin(t) $


Magnitude

$ |x(t)|=|\cos(t)+\jmath\sin(t)|=\sqrt{\cos^2(t)+\sin^2(t)}=\sqrt{2} $ <== check that again


$ E\infty $

   $ E\infty=\int_{-\infty}^\infty |\sqrt{2}|^2\,dt=2t|_{-\infty}^\infty $
   $ E\infty=\infty $


$ P\infty $

   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|2|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*2|_{-T}^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*2(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 2 $
   $ P\infty=2 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett