$ x(t) =\sqrt x $
$ E_\infty = \int_{-\infty}^\infty x(t) dt $
$ E_\infty = \int_{-\infty}^\infty \sqrt x dt E_\infty = \int_{-\infty}^0 j \sqrt -x dt + \int_0^\infty \sqrt x dt $
Solving for the two parts of $ E_\inf $:
$ \int_{-\infty}^0 j \sqrt -x dt = \dfrac {0 + \infty}{2} $ and $ \int_0^\infty \sqrt t dt = \dfrac{\infty + 0}{2} $
Therefore: $ E_\infty = \infty $
Solving for $ P_\infty $
$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} \int_{-t}^t x(\tau)d\tau $
$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} \int_{-t}^t \sqrt \tau d\tau $
Computing the integral:
$ P_\infty = \lim_{t\to\infty} \dfrac{1}{2t} * \dfrac{t^2}{2} = \infty $
$ P_\infty = E_\infty = \infty $