$ x(t)=5\cos(t)+5\jmath\sin(t) $


$ |x(t)|=|5\cos(t)+5\jmath\sin(t)|=\sqrt{25\cos^2(t)+25\sin^2(t)}=5 $

   $ E\infty=\int_{-\infty}^\infty |5|^2\,dt=25t|_{-\infty}^\infty $
   $ E\infty=\infty $


   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int|5|^2dt $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*25|_{-T}^T $
   $ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}*25(T-(-T)) $
   $ P\infty=lim_{T \to \infty} \ 25 $
   $ P\infty=25 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett