Emily Thompson erthomps@purdue.edu

$ x(t)=\sqrt(5t) $


$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\sqrt(5t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |5t|dt $

$ E\infty=\int_{0}^\infty 5tdt $

$ E\infty=\frac{5}{2}(t^2|_{0}^{\infty}) $

$ E\infty= \infty-0 $

$ E\infty=\infty $


$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T |\sqrt(5t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|5t|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{0}^T5tdt $

$ P\infty=\lim_{T \to \infty}\frac{\frac{5}{2}|t^2|_{0}^{T}}{2*T} $

$ P\infty=\lim_{T \to \infty}\frac{5}{4}\frac{T^2-0}{T} $

$ P\infty=\lim_{T \to \infty}\frac{5}{4}T $

$ P\infty=\infty $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva